South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 1 (2019), pp. 37-42.

ISSN (Print): 0972-7752

EXTENSION OF GENERAL CLASS OF GENERATING FUNCTIONS AND ITS APPLICATIONS-I

Kamlesh Bhandari

Department of Mathematics JIET Group of Institutions Mogra-Village, NH-65, Pali Road, Jodhpur, Rajasthan, INDIA

Email: bhandarikamlesh604@gmail.com

(Received: December 19, 2018)

Abstract: In this paper, we introduce a general class of generating functions involving the triple product of modified Laguerre polynomials $L_n^{(\alpha-n)}(x)$, modified Jacobi polynomials $P_m^{(\alpha,\beta-m)}(q)$ and the confluent hypergeometric functions ${}_1F_1[.]$ and then obtain its some more general class of generating functions by group-theoretic approach and discuss their applications. Earlier Bhandari [1] introduce a general class of generating functions involving the product of modified Jacobi polynomials $P_n^{(\alpha,\beta-n)}(x)$ and the confluent hypergeometric functions ${}_1F_1[.]$.

Keywords and Phrases: Generating functions, Modified Laguerre polynomials, Modified Jacobi polynomials, Confluent hypergeometric functions.

2010 Mathematics Subject Classification: 33C45, 33C99, 22E30.

1. Introduction

The modified Laguerre polynomials $L_n^{(\alpha-n)}(x)$ and modified Jacobi polynomials $P_m^{(\alpha,\beta-m)}(q)$ are defined by Srivastava and Manocha [5] as:.

$$L_n^{(\alpha-n)}(x) = \frac{\Gamma(1+\alpha)}{\Gamma(1+n)\Gamma(1+\alpha-n)} {}_{1}F_{1}[-n; 1+\alpha-n; x]$$
 (1.1)

$$P_m^{(\alpha,\beta-m)}(q) = \frac{(1+\alpha)_m}{m!} \, _2F_1\left[-m, 1+\alpha+\beta+m; 1+\alpha; \frac{1-q}{2}\right]$$
 (1.2)